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Abstract 

 Circular RNAs (circRNAs) are recently rediscovered eukaryotic molecules that form a covalently closed-

loop structure through a special type of alternative splicing known as backsplicing. These closed-loop structures 

are highly stable and resistant to RNase degradation, and are thereby expressed in a tissue-specific and 

evolutionarily conserved manner, which regulates the expression of proteins and mRNAs that are involved in the 

metabolic pathways associated with specific diseases. Recent evidence of the ubiquitous expression of circRNAs 

in cancer under physiological and pathophysiological conditions indicates that dysregulation of gene and protein 

expression might promote tumorigenesis and carcinogenesis, and that circRNAs have important clinical 

significance in the diagnosis, treatment, and prognosis of cancer and other diseases. This review provides a 

brief introduction to the characteristics, formation, and function of circRNAs. Some of circRNAs act as microRNA 

(miRNA) sponges to regulate the level of transcriptional splicing and the expression of parental genes through 

the circRNA-miRNA-mRNA regulation axis. We summarize recent progress in  above-mentioned circRNAs 

associated with Alzheimer's disease (AD). 
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Introduction 

 Different from linear RNA molecules, circular 

RNAs (circRNAs) are produced through non-canonical 

alternative splicing and form a covalently closed-loop 

structure that lacks 5' to 3' polarity and a polyadenylat-

ed tail (Fig.1). Therefore, circRNAs are naturally more 

stable with relatively longer half-lives than linear RNAs 

in vivo and are resistant to RNA exonucleases due to 

their closed secondary structure [1-4]. CircRNAs are 

mainly present in the cytoplasm and are mostly 

composed of exons; however, some circRNAs also retain 

intronic regions and are located in the nucleus [5]. The 

profiling of circRNAs has shown that the expression of 

disease-associated circRNAs is abnormal in 20 types of 

human tissues, with highest expression in the cortex 

and the lowest in liver tissues [6], indicating that the 

expression of circRNAs is tissue-specific. CircRNAs are 

enriched in the brain and increase in abundance during 

fetal development [5]. One study has also shown that 

circRNA expression is generally higher in later stages of 

growing development of the brain compared to the 

earlier stages [7]. Moreover, interindividual differences 

of circRNA expression levels in liver and brain tissues 

were detected by a flow scheme named RAISE (circRNA 

ReAlign Internal Structure and Expression) [8], which 

strongly cautions that only 0.5% of circRNAs are shared 

across human brain samples. 

 With the development of bioinformatics and 

high-throughput sequencing technology, numerous 

circRNAs have been rediscovered and identified in 

various eukaryotes [9-11] [12-16]. And the expression 

appears to be conserved. For example, Werfel et al [17] 

showed that approximately 13% of the human cardiac 

circRNAs are conserved to mouse and rats, and 23% of 

circRNAs are conserved between mouse and rat [18]. 

Similarly, approximately 5–10% of human brain 

circRNAs are expressed in the porcine brain [19, 20]. 

Taken together, the findings show that circRNAs are 

unlikely to be non-functional byproducts. Given its 

prevalence and the fact that these were overlooked until 

very recently, it is pertinent to further investigate the 

role of circRNAs in various biological processes. It is 

estimated that approximately 14% of the circRNAs in 

human fibroblasts are derived from active transcription 

genes [21]. It is true that circRNAs show a great 

variety: >100,000 species but these are below the 

detection threshold if the samples are not treated with 

RNases[3]. The expression levels of numerous circRNAs 

are significantly lower than those of their linear 

transcripts [5]. Salzman et al, states that circRNAs are 

expressed at 1-3% of the level of all poly (A) +                

RNAs [2]. However, the expression abundance and 

evolutionary conservation of circRNAs need further 

discussion. 

 Considering their ubiquitous presence and 

diversity, it is supposed that circRNAs may be functional 

in nomal cellular physiological or pathological processes. 

Our knowledge about their functions get expanded with 

subsequent identification. Specially, circRNAs can 

increase the expression levels of mRNA by competing in 

binding with target miRNAs [22, 23]. As some miRNAs 

have been proven that were strongly associated with 

diseases, we can take it for granted that circRNAs will 

play regulatory roles in the development of diseases 

[24]. In this review, we briefly introduce the biogenesis 

and function of circRNAs, and highlight their roles in 

Alzheimer's disease (AD).  

Biosynthesis Models of circRNAs 

 Catalyzed by spliceosome, the process of 

gradually editing the precursor m-RNA (pre-mRNA) into 

mature mRNA through intron removal is called RNA 

splicing, in which 99% of the bases of 5' end (donor 

site) and 3' end (receptor site) of introns are almost GU 

and AG [25]. Spliceosome is a 60S complex of RNA and 

protein formed during RNA splicing, which has the 

function of identifying 5' splice site (5' SS), 3' splice site 

(3' SS), and branching points of the pre-mRNA. A single 

pre-mRNA transcript can generate different mature 

mRNA isomers through alternative splicing, which is an 

important mechanism that leads to large diversity of 

genes and proteins in eukaryote [26]. CircRNAs are 

formed by a unique alternative splicing mechanism 

termed backsplicing, which generate the closed loop 

structure via joining a splice donor to an upstream 

splice acceptor. After canonical splicing, the relative 

order of exons in mRNA matches the order in genome, 

and no shuffling of exons occurs. While circRNA 

contains scrambled exons, which means the order of 

exons is different from that present in the nascent 

transcript [3]. 
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According to the constituent sections, circRNA can 

mainly be classified into three categories: one is termed 

exonic circRNAs (ecircRNAs), which localized in 

cytoplasm are mainly composed of single or several 

exons [2, 3, 24, 27]. Another with none critical elements 

and little enrichment for miRNA target sites inside is 

termed circular intronic RNAs (ciRNAs), which only 

contain introns and are localized mainly in the nucleus, 

mainly promote gene transcription by binding to RNA 

polymerase II [27]. The last one also localized in 

nucleus is termed exon-intron circRNAs (EIciRNAs), 

which contain both exons and introns [3, 28].  

 In addition, a special type of intronic circRNAs 

that are generated during pre-tRNA splicing, called tRNA 

intronic circRNAs (tricRNAs), which have been 

discovered in Archaea[29] and Drosophila [30]. The 

anciently conserved tRNA sequence motifs and the tRNA 

splicing endonuclease complex are necessary to remove 

introns, which then ligated by a 3', 5'-phosphodiester to 

form tricRNAs [31]. ElciRNAs play a monitoring role that 

ensures the integrity of the transcriptome by binding to 

the U1 element of the snRNPs. The U1 element initially 

binds to small nuclear ribonucleoproteins (snRNPs) to 

form a complex, which then combines with RNA pol II to 

promote transcription. U1 is a key element which can 

prevent the early termination during                 

transcription [10, 32, 33].  

 Besides the first and last exons of the pre-

mRNA, all internal exons theoretically can be circularized 

via the splicing signals in flanking introns on both sides. 

However, backsplicing reactions often occur at an 

extremely low level [34]. Their efficiency can be 

regulated by RNA binding proteins, exon skipping 

events, as well as the core spliceosomal components. At 

present, the theory regarding the biosynthesis of 

circRNAs consists of the following five models.  

i) Lariat-driven circularization (Fig 1b) [35]. This model 

is also called exon skipping, in which the formation of 

circRNAs based on the canonical splicing. If the pre-

Figure 1. The formation of different forms of circRNA in the nucleus is              

different from that of linear RNA. Finally，EcircRNA and linear RNA located 

outside the nucleus, while ciRNA and elciRNA located inside. 
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Figure  2. Schematic diagram of the biosynthesis of circRNAs. The pre-mRNA on the top 

of this diagram will synthesize different types of circRNAs through distinct splicing way 

of (a), (b), (c), and (d). The red arrows above introns represent reverse complementary 

sequences. In the intron2, the green and the yellow rectangle represents the 7-nt                

GU-rich sequence and the 11-nt C-rich sequence, respectively. BP means branching 

point. (a) Circularization depends on RNA binding proteins (RBPs). (b) Lariat-driven  

circularization. The red circles in this splicing way represent the splicing sites. (c) Intron 

pairing-driven circularization. (d) Formation of circular intronic RNAs (ciRNAs). 
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mRNA is partially folded, exon(s) may be skipped during 

the RNA splicing, then two previously non-adjacent 

exons are connected together to form a linear RNA. The 

skipped exon(s) along with the surrounding introns will 

form a structure of lariat, which should be degraded in 

normal cases. However, if the lariat further to be spliced 

again via backsplicing, the ecircRNA will be generated 

[36, 37]. 

ii) Intron pairing-driven circularization (or direct 

backsplicing) (Fig 1c) [38]. It is demonstrated that the 

biogenesis of circRNAs can be promoted by complemen-

tary base pairing interactions between flanking intronic 

repeats [11, 22, 33, 34, 39-41]. In details, these 

complementary repeats can form double-stranded RNA 

(dsRNA) structures, which bring the splice sites close to 

each other so that the backsplicing occurs [33, 39]. In 

the following step, the introns are removed or retained 

to form ecircRNAs or EIciRNAs. The occurance of this 

modle relys on the Alu complementarity which is specific 

in primates. 

iii) Circularization depends on RNA binding proteins 

(RBPs) (Fig 1a) [42]. With the help of RBPs, the splice 

donor and acceptor between flanking introns are 

brought close to each other, thereby promoting 

backsplicing [43, 44]. QKI is a alternative splicing factor 

that can combine with flanking intron sequences to form 

dimers to promote circularization which is similar to 

modle 2 [43]. Conn et al.[44] have found that large 

amounts of circRNAs formed along with the up-

regulation of QKI during human epithelial-mesenchymal 

transition (EMT), which indicates that the formation of 

circRNAs is time-space specific. Another RBP, MBL, can 

bind to the conserved sequence of its own introns and 

then regulate the circularization of exons, which derive 

from its own genes [43]. Moreover, SP proteins and 

hnRNPs in Drosophila have similar effects on the 

production of specific circRNAs [40]. 

 However, RBPs also inhibit the formation of 

circRNAs. For example, ADAR1 as a RNA editing 

enzyme, inhibits the synthesis of circRNAs via 

interacting with dsRNA and splitting it [45]. On the 

other hand, NF90/NF110[46] or the RNA helicase DHX9 

could also inhibit the backsplicing by directly unwinding 

the dsRNA or by recruiting ADAR1 [47]. 

iv) Formation of circular intronic RNAs (ciRNAs) (Fig 

1d). A 7-nt GU-rich sequence near the 5' splice site and 

an 11-nt C-rich sequence near the branching point 

prevents the larait structure being branched and 

degraded, and the lariat tail downstream of the 

branching point is trimmed to produce a stable ciRNA 

[48]. These special ciRNAs can act as cis-elements to 

interact with RNA polymerase II (Pol II) to promote 

transcription [27]. However, it is still unknown how 

these functional factors escape degradation. 

ⅴ) alternative splicing [49]. The competitional splicing of 

the pre-mRNA leading the single protein-coding gene to 

generate mutiple transcripts along with distinct circular 

RNAs, this process which is known as alternative 

splicing [2, 50-52]. The number of repetitive elements, 

spatial distance, and their degree of complementarity 

will all affect the splicing outcome [33].  

Biological Functions of circRNAs 

 Functions for the vast majority of circular RNAs 

remain unknown, but recently reported that some of 

them play roles in regulating miRNAs, alternative 

splicing patterns, or can be bound with ribosomes to 

produce proteins. Furthermore, circRNAs have additional 

novel functions such as acting as sponges for RBPs, 

direct binding to target genes, and direct translation as 

templates [53, 54]. 

CircRNAs can act as miRNA Sponges by Competing with 

Endogenous mRNAs. 

 The ceRNA hypothesis refers to the combination 

of a series of RNAs that can competitively bind to 

miRNAs, such as mRNAs, pseudogenes, and lncRNAs. 

These molecules all contain several homologous miRNA 

response elements (MREs) that can adsorb miRNAs like 

sponges to regulate mRNA expression levels, thereby 

affecting their functions [55]. CircRNAs can also absorb 

miRNAs to eliminate the inhibitory effect of miRNAs on 

the target gene [56]. Therefore, circRNAs belong to 

ceRNAs, and the adsorption capacity of miRNAs is 

stronger than that of linear mRNAs and lncRNAs due to 

the molecular characteristics of its long halftime, which 

helps in the mining of gene functions and regulatory 

mechanisms. For example, CiRS-7/CDR1as has been 

identified as a super sponge containing more than 70 

conserved binding sites for miR-7 and SRY70 and 16 

binding sites for miR-138 [57]. It has been proven that 
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circHIP3K contains multiple miRNA binding sites [58]. 

Subsequently, circular RNA-ITCHs (cir-ITCHs) have been 

shown to adsorb miR-22-3p to upregulate CBL 

expression [59]. Besides, cir-ITCH can also act as 

sponge of oncogenic miR-7 and miR-214 to enhance 

ITCH expression [60]. Therefore, circRNAs may play an 

important regulatory role in disease through the 

interaction with disease-associated miRNAs, The 

interaction above could be described as circRNA-miRNA-

mRNA regulation axis (Fig.2). Numerous circRNAs that 

have been reported to date, and thousands of circRNAs 

were predicted with miRNA binding sites, but it is still 

unknown whether they are all functional. Then by using 

SNP data to observe the SNP distribution at predicted 

miRNA target sites located on circRNAs. It is suggested 

that many of these predicted sites are functional sites 

under selective pressure due to the significant decrease 

of polymorphisms of circRNAs [61]. Majority of circRNAs 

possess relatively few miRNA binding sites that may not 

efficiently trap miRNAs, thus failing in exhibiting the 

expected properties of super sponges [62]. Therefore, 

whether circular miRNA sponges commonly occur and 

how the circRNA, miRNA, and ceRNA network is used in 

maintaining homeostasis remain unclear.  

CircRNAs can Regulate Translation and the Expression 

of Parental Genes. 

 In addition to acting as miRNA sponges, 

circRNAs can also act as protein sponges. CircFOXO3a 

can interact with senescence associated transcriptional 

factors in the cytoplasm (e.g.,HIF1α, ID1, or E2F1), 

trapping these within the cytoplasm and preventing 

them from translocation to other organelles [63]. 

Additionally, above mentioned blind muscle protein 

(MBL/MBLN1) in flies (Drosophila melanogaster) and 

humans can control its own levels. In detail, MBL as a 

kind of RBP to promote the generation of circMBLs that 

have multiple MBL binding sites, which in turn captures 

this protein when MBL is overexpressed [49]. Further 

studies have revealed that the circRNAs corresponding 

to the formin gene in mice contain a translation 

initiation site that captures mRNAs to form non-coding 

linear transcripts, thereby reducing the level of Fmn 

protein encoded by the parental gene [64]. CiRNAs and 

ElciRNAs localized in the nucleus can be used to                 

cis-regulate the transcription of polymerase II by 

interacting with pol II [5]. For example, circEIF3J and 

circPAIP2 can bind to U1 snRNPs to enhance the 

transcription of the parental gene [65]. Therefore, we 

speculate that only exonic circRNAs play a regulatory 

role in the cytoplasm, whereas the circRNAs containing 

introns perform effective transcriptional regulation in the 

nucleus. In addition, studies have found that circRNAs 

inserted into the internal ribosome entry site (IRES) 

upstream of the initiation site can artificially synthesize 

proteins[66]. This suggests that perhaps some of 

circRNAs can also be directly converted into proteins. 

Subsequently, circRNAs were found with coding ability 

including circ-SHPRH [67], circ-FBXW7 [68],                      

Circ-ZNF609 [69, 70], and so on. Furthermore, it is 

found that the N6-methyladenosine (m6A), the most 

abundant base modification of RNA, can promote 

efficient initiation of protein translation from circRNAs in 

human cells [71]. All of these circRNA-derived proteins 

largely expand the coding landscape of human 

transcriptome and can be exploited as high specific 

novel targets for targeted therapies. 

CircRNAs as Diagnostic or Prognostic Biomarkers.  

 An increasing amount of research shows that 

circRNAs are involved in the pathogenesis of 

cardiovascular disease [72], neurodegenerative             

disease [73], and cancer [74], and thus may be utilized 

as disease biomarkers. For example, a large number of 

CDR1as is expressed in the brain that contain 60 bp of 

miR-7 binding sites, which is associated with a variety of 

disease pathways. It has been confirmed that CDR1as is 

involved in the regulation of Parkinson's and Alzheimer's 

disease [75-77]. At the same time, miR-7 is involved in 

carcinogenesis and tumor inhibition, and therefore, the 

regulatory axis of CDR1as/miR-7 is likely to be closely 

related to the occurrence and development of          

tumors [78-81]. These findings show that circRNAs are 

closely related to the occurrence of disease and is a 

potential target for the future diagnosis and treatment 

of disease. 

 Although circRNAs are highly stable and has 

great potential as biomarkers for disease diagnosis, 

their use in clinical trials and in patient diagnosis 

remains limited. Considering the great variability in 

circRNAs between individuals, and even within 

individuals taken on different days [82], there is 
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Figure  3. The schematic of circRNA-miRNA-mRNA regulation axis. A. CircRNAs as one of 

ceRNAs compete with mRNA for binding to miRNAs; circRNAs and mRNAs all contain MREs 

inside (MREs are represented by red, yellow, and green small vertical lines). CircRNAs and 

mRNAs interact with homologous MREs on miRNAs via base complementation.  B. The             

competitive binding of miRNA between circRNA and mRNA. C. The expression level of the 

mRNA. Every (a), (b), (c), and (d) in B or C is corresponding. (a) When three sites on mRNA 

bind to the miRNA, the inhibitory effect is strongest during translation and the expression 

level of protein is the lowest. (b) When one site on the circRNA and two sites on the mRNA 

bind to the miRNA, the inhibitory effect is stronger during translation and the expression 

level of protein is lower. (c) When two sites on the circRNA and one site on the mRNA bind 

to the miRNA, the inhibitory effect is weaker during translation and the expression level of 

protein is higher. (d) When three sites on circRNA and no site on mRNA bind to the miRNA, 

the inhibitory effect is weakest during translation and the expression level of protein is the 

highest. 
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necessary to discuss in detail the key indicators for the 

assessment of the sensitivity, specificity, easy detection, 

and repeatability of tissue- and disease-associated 

circRNAs. Studying the influence of potential factors 

such as organization and blood collection and 

processing is important to ensure that standardization of 

reliability and reproducibility in the operational process 

involves the collection of data regarding conditions, 

equipment, applications, and sample acquisition, 

transportation, handling, and storage issues [83-85].  

 It is important to find biomarkers that are highly 

specific and sensitive for the early diagnosis and staging 

of diseases to facilitate large-scale population screening 

because it is difficult to accurately diagnose and predict 

the occurrence of diseases based on multiple 

biomarkers [86]. In addition, it is necessary to develop 

reagents and methods for detecting biomarkers with 

high sensitivity, specificity, and stability such as ELISA 

kits, mass spectrometry, automatic electrochemilumi-

nescence immunoassays, and blood biomarker 

detection. There is a need to standardize biomarker 

detection, analysis of the standardization of pre-analysis 

factors, unified detection methods, and the use of 

automated analysis methods to achieve comparability of 

the data, and these current obstacles can provide the 

basis for determining the critical value of circRNAs for 

clinical diagnosis. 

CircRNAs in Alzheimer's Disease (AD) 

 Neurodegeneration is a disease that occurs in 

the brain and spinal cord with the symptoms of 

neuronal loss. It may be destructive and irreversible for 

cells that are excessively damaged, because cells in this 

condition will not regenerate. Senile dementia is also 

known as Alzheimer's Disease (AD) that belongs to 

Chronic neurological diseases. The main                 

histopathological traits of AD are Aβ plaques and 

neurofibrillary tangles (NFTs)，which often occur in the 

neocortex, hippocampus and other subcortical areas of 

the brain [87]. Recent studies have revealed a potential 

link between AD and circRNA-associated-ceRNA 

networks (Fig.3).  

 The peptide amyloid β (Aβ) that has strong 

neurotoxicity are derived from the degradation of 

Figure 4. Schematic of AD pathogenesis. The generation and aggregation of amyloidogenic 

Aβ peptides outside of the cell leads to the formation of amyloid plaques. The                

hyperphosphorylation of Tau protein results in formation of intracellular neurofibrillary                  

tangles. Amyloid plaques and neurofibrillary tangles synergy cause neuroinflammation.                     

Illustration of graphic symbols is in the black box at the top right. 
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amyloid precursor protein (APP) through secretase. The 

cleavage of transmembrane protein APP leads to the 

extracellular accumulation of Aβ and thus form the Aβ 

plaques [87]. APP has two metabolic pathways: in the 

normal metabolic process, through α-secretase, APP can 

produce soluble N-terminal fragment sAPPα, which act 

as neuroprotection to prevent the formation of Aβ. In 

another metabolic pathway, if the APP is cleaved by β-

secretase, such as BACE1 (b-site app-cleaving enzyme 

1), the N-terminal secretory polypeptide fragment sAPPβ 

will produce, however the C-terminal fragment C99 

remains on the membrane. C99 is further degraded by γ

-secretase to produce Aβ peptide (Aβ40 and Aβ42), in 

which Aβ42 will finally form senile plaques through 

aggregation and deposition [88]. For another, the 

presence of microtubule associated protein tau (MAPT) 

may induce chronic inflammation and neuronal loss, 

which mainly result in NFT formation. Protein Tau will 

become hyperphosphorylated Tau catalyzed by glycogen 

synthesis kinase 3 (GSK-3). At this point, MAPT loses its 

ability to bind microtubules and becomes unstable, 

aggregating into double-stranded helical fibers (PHFs), 

which then formed the filaments of NFTs. In addition, 

Aβ can enhance the activity of GSK-3 to induce 

hyperphosphorylation of Tau, which cooperate with the 

deposition of Aβ can enhance the cytotoxicity and thus 

produce neuroinflammation. The imbalance between 

Tau phosphorylation and dephosphorylation is an early 

event in NFT formation and AD pathogenesis [89]. 

Figure 4. 

 Studies have shown that the expression level of 

ciRS-7 were significantly reduced in hippocampal CA1 

region samples of AD patients compared with healthy 

controls [75]. Therefore, it is predicted that the lack of 

ciRS-7 may lead to decreased expression of selective 

miR-7 targets,  and the expression of Ubiquitin protein 

ligase A (UBE2A) was reduced through miRNA sponge 

function [90]. UBE2A is a miR-7 target that is essential 

for the clearance of AD-amyloid peptides. Due to the 

inhibition after miR-7 binding, UBE2A was               

downregulated in AD. In addition, ciRS-7 was found to 

promote the degradation of APP and BACE1 in a nuclear 

factor-κB (NF-κB)-dependent manner in SH-SY5Y cells. 

The network of ciRS-7-miR-7-UBE2A suggests that ciRS-

7 can act as an effective therapeutic target in AD. 

Through backsplicing, MAPT can conjugate exon12-10 

to produce circular RNA (cir12-10), which is located in 

the cytoplasm and contains ORF that encodes the Tau 

fragment [91]. Studies have shown that there is a high 

probability to cause frontotemporal dementia (FTD) 

after interfering mutation to exon 10 of Tau [92]. 

Moreover, exon 10 usage as well as cdc2-like kinase 

(CLK2) splicing isoforms are changed in AD [93]. 

 In order to explore the relationship between 

circRNA-associated-ceRNA and AD, Zhang et al. [94] 

used senescence-accelerated mouse resistant 1 

(SAMR1) as the control to perform deep RNA-seq 

analysis on the brain of senescence-accelerated mouse 

prone 8 (SAMP8) model. They found 235 significantly 

dysregulated circRNA transcripts, 30 significantly 

dysregulated miRNAs, and 1202 significantly 

dysregulated mRNAs, then constructed comprehensive 

circRNA-associated-ceRNA networks to conduct GO 

analysis. It was found that circRNA-associated-ceRNA 

networks can affect AD from various aspects, such as 

axon terminal and synapses. After further screening, it 

was determined that this network was involved in 

regulating the clearance of Aβ and the function of 

myelin in AD model mice. 

Discussion and Prospects 

 Through interactions with disease-associated 

miRNAs, circRNAs can play an important regulatory role 

in specific diseases and have important potential to 

become clinical diagnostic markers [95]. RNA-seq and 

bioinformatics analysis are now commonly used to 

comprehensively analyse circRNAs. RNA-seq can easily 

detect new circRNAs, and the use of microarrays is a 

more accurate measure of abundance. High-throughput 

sequencing was used to detect the entire gene 

expression profile of circRNAs. Systematic bioinformatics 

analysis may be used to assess circRNA abundance and 

related fold changes. Then, circRNA samples exhibiting 

differential expression may be selected for further FISH, 

Q-PCR, and Northern blot validation. Finally, circRNAs 

are analyzed at the cellular and tissue levels, and gene 

editing may be employed to knockout the gene of 

interest to study its function. Future research analysis 

should be performed on the following: (1) the feedback 
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mechanism of specific circRNAs and their corresponding 

genes; (2) correlation analysis of miRNAs that interact 

with specific circRNAs; and (3) the influence of relevant 

physiological and pathological parameters such as cell 

cycle, proliferation, apoptosis, migration, and interstitial-

epithelial transitions. The resulting information may then 

be employed in drug development. Developmental stage 

specificity of circRNA expression provides a new 

perspective for us to study biological development.  

 As shown in the study of Li et al., circRNAs have 

the extremely low abundance but great diversity, which 

may be related to the limitation of the exon detection 

algorithm. CircRNAs can regulate the onset and 

metastasis of human diseases, which can also be used 

as a potential biomarkers for cancer diagnosis. 

Detection of doxorubicin-resistant breast cancer cells 

(MCF-7/adriamycin(ADM)) and their parental cell line by 

circRNA microarray analysis showed that there was a 

relationship between MCF-7/ADM and MCF-7. 

TargetScan and miRanda have been used to predict the 

target miRNA and mRNA of the upregulated circRNA. 

Ina ddition, the regulatory role of the circ_0006528-miR

-7-5p-Raf1 axis in ADM-resistant cancer has been 

elucidated. These results indicate that circRNAs play an 

important role in cancer resistance and may be 

employed in further functional analysis of 

hsa_circ_0006528. Bioinformatics analysis indicates that 

some target genes are related to tumor-related 

signaling pathways [96]. A more comprehensive study 

of the detailed mechanisms of circRNAs and their 

potential value in clinical applications will now be 

discussed.  

 Considering their ubiquitous presence and 

diversity, circRNAs might be major contributors to 

normal cellular physiological or pathological processes. 

The abnormal expression of circRNAs is closely related 

to the occurrence of disease, which raises a new 

direction for mining biomarkers and novel therapeutic 

targets. Although the exact roles and mechanisms of 

circRNAs in gene regulation remain elusive, their 

contribution to human diseases has been recognized. 

More circRNAs and their biological functions will be 

uncovered in the near future. Understanding the 

interaction among proteins, circRNAs, and DNA at a 

specific time may contribute to the elucidation of 

circRNA functions. In addition, investigating the 

regulatory network of circRNAs may help in develop-

ment novel therapeutic schemes in cancer and other 

diseases.  
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